AEDG Peptide

Anti-Aging

A tetrapeptide (Ala-Glu-Asp-Gly) identical to Epithalon's core active sequence — effectively the same compound. Studied for telomerase activation and pineal gland regulation, promoting melatonin production and potentially slowing cellular aging through telomere maintenance. Part of the Khavinson bioregulator peptide family developed at the Institute of Bioregulation and Gerontology in St. Petersburg.

Half-Life

1-2 hours

Half-Life Calculator →

Typical Dosage

Oral/sublingual: 10-20 mg once daily. Injectable: 1-10 mg subcutaneous once daily. Typical course: 10-20 days, repeated every 3-6 months. Same protocols as Epithalon.

Administration

Subcutaneous injection, oral, or sublingual

Mechanism of Action

AEDG peptide (Ala-Glu-Asp-Gly) is the minimal active sequence of Epithalon and represents the core tetrapeptide responsible for its reported biological effects. According to the Khavinson peptide bioregulator theory, this short sequence has tissue-specific gene-regulatory activity, particularly targeting pineal gland cells and somatic cells capable of telomerase expression.

The primary reported mechanism is activation of telomerase, the ribonucleoprotein enzyme that maintains telomere length. AEDG is proposed to interact with regulatory elements in the hTERT gene promoter (encoding the catalytic subunit of telomerase), enhancing its transcription in somatic cells where hTERT is normally silenced or minimally expressed. Reactivation of telomerase allows cells to add TTAGGG telomeric repeats to chromosome ends, counteracting the progressive telomere shortening that occurs with each cell division and ultimately triggers replicative senescence. Cell culture studies from the Khavinson laboratory have reported that AEDG treatment extends the replicative lifespan of human fibroblasts and increases telomerase activity in peripheral blood mononuclear cells.

The second major reported mechanism involves regulation of pineal gland function. The pineal gland produces melatonin — the circadian rhythm hormone and potent antioxidant — and its function declines markedly with age (pineal calcification and reduced melatonin output). AEDG is proposed to modulate gene expression in pinealocytes, restoring melatonin synthesis toward more youthful levels. This would have downstream effects on circadian rhythm regulation, sleep quality, antioxidant defense, and immune function — all of which are modulated by melatonin. Additional reported effects include upregulation of antioxidant enzyme expression (SOD, catalase) and modulation of cell cycle regulatory genes. As with other Khavinson peptide bioregulators, the research base is predominantly from Russian institutions, and the proposed direct DNA-binding mechanism awaits independent validation.

Regulatory Status

Not FDA approved. Studied extensively in Russia by Professor Vladimir Khavinson. Available through research suppliers and some compounding pharmacies.

Risks & Safety

Common: injection site irritation, mild drowsiness (may relate to melatonin upregulation). Serious: same theoretical concern as Epithalon about telomerase activation in pre-cancerous cells, limited Western safety data. Rare: allergic reactions. Generally well tolerated. Most evidence from Russian research programs. Not FDA approved.

Research Papers

3
The Influence of Short Peptides on Cell Senescence and Neuronal Differentiation.

Published: September 9, 2025

Abstract

It has been previously shown that some short peptides are involved in various cellular processes, such as transcription modulation and regulation of differentiation mechanisms. In particular, the effect of peptides on the neuronal differentiation of human periodontal ligament stem cells has been demonstrated. The goal of this study was to assess the effect of KED, EDR, and AEDG short peptides in stimulating the transdifferentiation of fetal MSCs into induced neuronal cells and prevention of their senescence. We applied a novel in vitro technique for neuronal cell generation, which combines the use of microRNAs, transcription factors, and small molecules to transdifferentiate fetal mesenchymal stem cells into induced cortical neurons. It was shown that the application of AEDG and KED short peptides at the end of the transdifferentiation process decreases the expression of the cell cycle marker p21 by 15% and beta-galactosidase activity by 1.51-2.4 times. However, short peptides did not affect the expression levels of TUj-1 and LaminB1, whose expression also changes during neuronal differentiation. The experiments indicate the potential of AEDG and KED short peptides as modulators of neurogenesis and geroprotectors and suggest that they can be used as stimulators of neuronal differentiation.

The Antioxidant Tetrapeptide Epitalon Enhances Delayed Wound Healing in an in Vitro Model of Diabetic Retinopathy.

Published: August 9, 2025

Abstract

Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and a leading cause of vision loss. Short peptides, such as di-, tri-, and tetrapeptides, have various beneficial activities, including antioxidant, antimicrobial, and anti-inflammatory effects. This study aims to test the hypothesis that the antioxidant effect of the synthetic tetrapeptide AEDG (Ala-Glu-Asp-Gly, Epitalon) improves the delayed healing process associated with hyperglycemia in DR, using a high glucose (HG)-injured human retinal pigment epithelial cell line (ARPE-19). We found that HG exposure delayed wound healing in ARPE-19 cells and increased intracellular levels of reactive oxygen species (ROS), while decreasing antioxidant gene expression. HG also induced epithelial-mesenchymal transition (EMT) and upregulated fibrosis-related genes, suggesting that HG-induced EMT contributes to subretinal fibrosis, the end-stage of eye diseases, including proliferative DR. The antioxidant Epitalon restored impaired wound healing in HG-injured ARPE-19 cells by inhibiting hyperglycemia-induced EMT and fibrosis. These findings support using the antioxidant agent Epitalon as a promising therapeutic strategy for DR to improve retinal wound healing compromised by hyperglycemia. More mechanistic investigations are needed to confirm Epitalon's benefits and safety. Developing ophthalmic forms of Epitalon may enhance its delivery directly to the retina, potentially improving its therapeutic efficacy.

Overview of Epitalon-Highly Bioactive Pineal Tetrapeptide with Promising Properties.

Published: March 16, 2025

Abstract

Epitalon, also known as Epithalon or Epithalone, is a tetrapeptide, Ala-Glu-Asp-Gly (AEDG), which was synthesized based on the amino acids composition of Epithalamin, a bovine pineal gland extract, prior to its discovery in pineal gland polypeptide complex solution. During the last 25 years, this compound has been extensively studied using in vitro, in vivo, and in silico methods. The results of these studies indicate significant geroprotective and neuroendocrine effects of Epitalone, resulting from its antioxidant, neuro-protective, and antimutagenic effects, originating from both specific and nonspecific mechanisms. Although it has been demonstrated that Epitalon exerts, among other effects, a direct influence on melatonin synthesis, alters the mRNA levels of interleukin-2, modulates the mitogenic activity of murine thymocytes, and enhances the activity of various enzymes, including AChE, BuChE, and telomerase, it remains uncertain whether these are the sole mechanisms of action of this compound. Moreover, despite the considerable volume of research on the biological and pharmacodynamic characteristics of Epitalon, the quantity of physico-chemical and structural investigations of this peptide remains quite limited. This review aims to conclude the most important findings from such studies, thus presenting the current state of knowledge on Epitalon.

Related Peptides

CJC-1295 (no DAC)

A synthetic GHRH analogue (also called Mod GRF 1-29) consisting of the first 29 amino acids of native GHRH with four amino acid substitutions for increased enzymatic stability. Stimulates natural, pulsatile growth hormone release while preserving the body's somatostatin feedback regulation. One of the most commonly prescribed GH peptides, often combined with Ipamorelin for synergistic effects.

BodybuildingAnti-Aging

CJC-1295 + Ipamorelin

The most commonly prescribed peptide combination in anti-aging and regenerative medicine. Pairs the GHRH analogue CJC-1295 (Mod GRF 1-29) with the selective ghrelin-mimetic Ipamorelin for synergistic, pulsatile growth hormone release. Exploits two complementary signaling pathways — cAMP (GHRH) and calcium/PLC (ghrelin receptor) — to amplify GH pulses while maintaining minimal side effects.

BodybuildingAnti-Aging

CJC-1295 with DAC

CJC-1295 with Drug Affinity Complex — the same core GHRH analogue as Mod GRF 1-29 but with a reactive succinimide linker that covalently binds to circulating albumin after injection. This albumin binding dramatically extends the half-life from 30 minutes to nearly a week, allowing weekly dosing. Produces sustained rather than pulsatile GH elevation, which some practitioners consider less physiological.

BodybuildingAnti-Aging

Cortagen

A short synthetic tetrapeptide bioregulator (Ala-Glu-Asp-Pro) developed by the Khavinson Institute in Russia. Designed to normalize brain cortex function by modulating gene expression in cortical neurons. Part of the Khavinson peptide bioregulator family alongside Epithalon and Vilon. One of the few peptides specifically formulated for cortical brain function optimization, available in both injectable and oral/sublingual forms.

CognitiveAnti-Aging